CASE PRESENTATION

BY DR.RAHUL AGARWAL (JR 3 DEPT OF RADIO-DIAGNOSIS GMC,NAGPUR)

CLINICAL COMPLAINTS

 8-year-old child was brought to the casualty the chief complaints of giddiness and lethargy since last 15 days, bilateral painful proptosis associated with redness in the eyes since last 3 months and bilateral swelling in inguinal and axillary region.

Consent was taken from patient's parents for the image

EXAMINATION

On ocular examination:

• There was overlying chemosis which severe exposure keratopathy , axial proptosis along with Lagophthalmos and restricted ocular mobility

Haematological examination:

- WBC count of 10,500, RBC-4400 , Platelets-2.5lakhs
- Presence of microcytic hypochromic anaemia with anisopoikilocytosis ,pencil cells and polychromasia.

MRI ORBIT- T1 AND T2

MRI ORBIT-T2

MRI ORBIT-DWI AND ADC

MRI ORBIT-PR AND POST CONTRAST

MRI ORBIT–SWI AND PHASE

MRI ORBIT-DWI AND ADC

MRI BRAIN -T2 AND FLAIR

MRI BRAIN-DWI AND ADC

MRI BRAIN–SWI AND PHASE

MRI BRAIN PRE AND POST CONTRAST

HRCT THORAX

CONTRAST ABDOMEN

NCCT HEAD

Bone marrow examination

• Hypercellular bone marrow with more than 90% blast cells with negative strain for MPO.

FINAL DIAGNOSIS

- These imaging features in a known case of acute lymphoblastic leukaemia may suggest diffuse extra medullary haematopoiesis involving orbital, sino-nasal and mandibular bones. Other possibility of bilateral or vital and skeletal leukemic infiltration appears less likely.
- Non enhancingT2/FLAIR hyperintensities in the bilateral cerebellar peduncle in a known case of acute lymphoblastic leukaemia may suggest possibility of paraneoplastic demyelinating lesions more over leukemic infiltrate

- Extraconal and intraconal compartments: Most frequent sites.
- Lacrimal gland: May appear enlarged with abnormal signal and enhancement.
- **Optic nerve/sheath complex**: Can cause compression, edema, or enhancement.
- **Orbital bones**: Marrow replacement or erosion may be seen, especially in aggressive disease.
- Extraocular muscles: May be infiltrated but typically retain their shape (vs. orbital pseudotumor, which causes muscle enlargement including tendinous insertions).

Distinguishing EMH vs. Leukemic Infiltration on Imaging

MRI Feature	EMH	Leukemic Infiltrate
Location	Extraconal or near orbital bones	Can be intraconal or diffuse
T1 signal	Iso- to mildly hyperintense (fatty elements)	lso- to hypointense
T2 signal	Variable; may be hyperintense or heterogeneous	Generally hyperintense
Enhancement	Mild to moderate	Often homogeneous, intense enhancement
Symmetry	Often bilateral and smooth	May be unilateral , asymmetric, or infiltrative
Bony changes	May be associated with bone expansion	Bone erosion is more typical in aggressive leukemic masses

Pathological Differentiation (Gold Standard)

Feature	Extramedullary Hematopoiesis (EMH)	Leukemic Infiltration
Cellularity	Normal tri- lineage hematopoiesis (RBC, WBC, megakaryocytes)	Monomorphic lymphoblast s (usually B- or T-lineage in ALL)
Organization	Structured, marrow-like architecture	Sheets of immature, undifferentiated cells
Mitotic activity	Low to moderate	High (due to blast proliferation)
Functionality	Produces blood cells	Non-functional neoplastic tissue
Immunohistochemistry	Negative for markers of blasts (TdT, CD10, CD34)	Positive for lymphoblast markers (TdT, CD34, CD10, CD19/CD3)

Stage-wise Pathophysiology of Orbital Infiltrates in Acute Lymphoblastic Leukaemia (ALL)

Stage	Pathophysiological Events	Orbital Involvement	Clinical Features
Stage 1: Hematologic Leukemia Initiation	Leukemic cells (immature lymphoblasts) proliferate uncontrollably in the bone marrow and enter the bloodstream . No extramedullary involvement yet.	No orbital involvement at this stage. Leukemic cells confined to bone marrow and blood .	Fatigue, pallor, fever, easy bruising, bone pain, and lymphadenopathy.
Stage 2: Extramedullary Spread	Leukemic cells migrate to extramedullary sites via the bloodstream, such as the liver, spleen, lymph nodes , and orbit	Orbital infiltration begins, often involving orbital fat, lacrimal glands, and extraocular muscles.	Proptosis (eye bulging), periorbital swelling, eye pain, diplopia (double vision), and visual disturbances.
Stage 3: Orbital Infiltration	Leukemic cells infiltrate orbital soft tissues , including fat , extraocular muscles , and optic nerve sheath . Angiogenesis occurs to support growing tumor	Orbital masses form in extraconal and intraconal spaces. The optic nerve may be compressed.	Painful proptosis, restricted eye movement, visual impairment, diplopia, ocular discomfort, and headache.
Stage 4: Advanced Leukemia & Systemic Spread	Leukemia becomes more aggressive with widespread systemic involvement, including the orbit. Bilateral orbital involvement may occur. Orbital bone marrow may also be affected.	Bilateral orbital infiltration and mass effect. Orbital bone marrow infiltration leads to bone erosion	Bilateral proptosis, severe visual disturbances, pain, swelling, visu al impairment, and systemic symptoms like fever, weight loss, and splenomegaly.
Stage 5: Myeloid Sarcoma (Chloroma) Formation	Development of solid tumors made of immature myeloid cells (chloromas) in extramedullary sites. These can infiltrate the orbit. Increased angiogenesis and necrosis occur.	Formation of orbital chloromas (solid masses) leads to severe proptosis and mass effect. Optic nerve compressionmay occur.	Severe proptosis, pain, visual loss from optic nerve compression, headache, and orbital mass palpable on exam.

MRI Findings in a Case of ALL in the Cerebellar Peduncles and Dentate Nucleus

MRI Finding	Reason for the Finding
T2/FLAIR	Bilateral hyperintense signal (may be symmetric or slightly asymmetric)
T1	Usually isointense or hypointense
DWI/ADC	May show restricted diffusion in acute stages if inflammation is high
Post-contrast	Typically no enhancement (if immune- mediated), or mild patchy enhancement
No mass effect or edema	Helps differentiate from infiltrative tumors or CNS leukemia

Mechanisms:

1. Immune Cross-Reactivity (Molecular Mimicry)

The immune system attacks leukemic cells **and accidentally targets myelin or neurons** that share similar antigens.

No leukemic cells in CNS, but **inflammatory demyelination** occurs.

2. Paraneoplastic Autoantibodies

Antibodies or T-cells may attack **oligodendrocytes or cerebellar neurons**.

3. Cytokine Storm / Inflammatory State

ALL can trigger **massive cytokine release** \rightarrow BBB disruption \rightarrow CNS inflammation and demyelination.

MRI Comparison: Paraneoplastic Demyelination vs. Leukemic Infiltration

MRI Feature	Paraneoplastic Demyelination	Leukemic Infiltration
Location	Bilateral , symmetric involvement of dentate nuclei	Can be unilateral or asymmetric , may extend beyond cerebellum
T2/FLAIR	Hyperintense signal in dentate nuclei (symmetric), often no mass effect	Hyperintense but more likely with adjacent edema and mass effect
T1	Iso- to hypointense	Iso- to hypointense
DWI/ADC	Mild restricted diffusion (if acute inflammation) or none	Marked restricted diffusion due to high cellularity of blasts
Contrast enhancement	Usually none or minimal , non- nodular	Nodular, patchy, or leptomeningeal enhancement common
Mass effect	Absent	Present if large infiltrate or tumor- like mass

Oifferential Diagnosis

Entity	Key MRI Clues	Clinical Clues
Orbital lymphoma	Homogeneous, T1 isointense, mild T2 hyperintense, strong enhancement	Older patients, painless, no systemic leukemia
Rhabdomyosarcoma	Rapidly growing, heterogeneous, T2 hyperintense, variable enhancement	Children, painful, very aggressive
Orbital pseudotumor (idiopathic orbital inflammation)	T2 hypointense (fibrosis), muscle tendon involvement	Painful, acute, often unilateral
Neuroblastoma metastases	Bony involvement, calcifications	Pediatric tumor with systemic features
Optic nerve glioma	Fusiform nerve thickening, T2 hyperintense, no diffusion restriction	Slow-growing, often NF1-related

AFTER COMMENCEMENT OF TREATMENT

- Treatment was commenced with methotrexate, vincristine and daunorubicin.
- There was clinical and hematological resolution of the symptoms with decrease in proptosis and orbital swelling.

Consent was taken from patient's parents for the image

Why MRI Orbit Matters in ALL

Detects orbital leukemic infiltration

- Common in relapse or initial presentation
- Appears as soft tissue masses, muscle involvement, optic nerve thickening

Assesses optic nerve involvement

- Helps diagnose CNS spread via optic pathways
- Identifies optic neuritis, sheath enhancement

Guides differential diagnosis

Monitors treatment response

- Tracks resolution or progression of orbital disease
- Useful after chemotherapy, intrathecal therapy, or radiation

Prevents vision loss

• Early detection allows timely therapy (e.g. corticosteroids, CNS chemo)

Supports CNS staging

• Helps in identifying subtle CNS involvement in high-risk patients

Non-invasive, high-resolution

• Preferred imaging modality for soft tissue, nerve, and marrow assessment in orbit

CASE ACKNOWLEDGEMENT

- 1. DR.RAVI RAJDEO SIR: Associate professor in the department of radio-diagnosis GMC ,Nagpur.
- 2. DR.POOJA RAUT MAM: Lecturer in the department of radiodiagnosis GMC ,Nagpur.

References

 Husain, M. I., & Grover, S. (2015).
"Central nervous system involvement in acute leukemia: imaging findings."
Journal of Clinical Imaging Science.

2. "Osborn's Brain: Imaging in Neurology" by Mark A. R. Osborn.

3.. Koral, K., & Kim, D. W. (2016). "Imaging in CNS leukemia: orbital and cerebellar involvement." *Journal of Pediatric Radiology*.

4. "Robbins and Cotran Pathologic Basis of Disease" by Vinay Kumar, Abul Abbas, and Jon Aster.

Thank you!

